Batteries... May the Force Be With You

By Dave Turnmire N7TZK

First... Some Terminology

- Battery capacity is rated in Ampere-Hours (Ah). The amount of time the battery can deliver a given amount of current. For instance, a 10Ah battery can theoretically provide 10A for one hour.
- "C" also refers to this Ah rating. So... a C/10 charge rate on a 35Ah battery means 3.5A charge current

Pocatello Amateur Radio Club

Characteristics of Batteries

- Four primary components: positive and negative electrodes, separator, and electrolyte.
- The physical construction as well as the battery chemistry affect performance
- We'll focus on re-chargeable batteries... but don't forget Alkaline batteries...

Characteristics of Batteries

- Different types vary in key characteristics:
 - Nominal cell voltage
 - Self-discharge rate
 - Number of charge cycles (life)
 - Max safe charge/discharge current
 - Weight for given capacity
 - Safety
 - Cost

Common Battery Technologies

- Lead Acid:
 - Flooded, aka "wet"
 - Sealed Lead Acid: AGM and Gel
- NiCd and NiMH
- Lithium-Ion
 - LiCoO₂ aka "LCO"
 - LiNiMnCoO₂ aka "NMC"
 - LiFePO₄ aka "LFP"

- Cheap capacity
- Heavy compared to other batteries
- Slower to charge than others
- If stored for weeks or months with cell voltage much below 2.1V, *sulfation* occurs, which reduces battery life. Sometimes it can be fixed with a 24hr overcharge... other times it is permanent.

- Flooded, aka "wet"
 - More dangerous than sealed.
 - Can spill acid
 - Corrosion issues
 - Generates hydrogen.. Boom!
 - Environmental concerns

- Different construction types:
 - Car batteries designed for short duration, large discharge rate. But don't like deep discharging
 - Deep-Cycle batteries can't provide as much discharge current... but tolerate deep discharges

- Construction types (Cont'd):
 - Marine: usually a hybrid. Generally shouldn't discharge below 50%
 - Golf cart batteries are typically "semi deep cycle". Usually can be discharged to 25-30%. Typically economical

- Sealed lead acid
 - Safer than flooded but more sensitive to overcharging
 - Two to three times as expensive as flooded
 - Typical charge voltage: 2.37 to 2.40V/cell
 - Typical float voltage: 2.20 to 2.22V/cell

- Sealed lead acid (Cont'd)
 - Gelled type
 - Can tolerate more discharges below 50% than starter batteries... deep-cycle better
 - Must be charged slower than AGM or flooded and at lower voltage
 - Don't function well below 32°

- AGM= Absorbed Glass Mat
 - Like gel, low self-discharge
 - Can discharge farther and charge faster than gel
 - Less likely to sulfate at low cell voltages (<2.05V/cell) than other lead acid batteries
 - For max battery life, don't discharge more than 50%

NiCd and NiMH

- NiCd= Nickel-Cadmium
 - Nominal cell voltage of 1.2V
 - High self-discharge rate
 - Supports high discharge rate
 - Long life... with an intelligent charger..
 - Much lighter than lead acid
 - More \$ than lead acid
 - Cadmium= Bad

NiCd and NiMH

- NiMH=Nickel Metal Hydride
 - Similar to NiCd, but...
 - Safer for environment
 - Higher capacity
 - Cheaper
 - Tolerates deep discharge
 - Higher self-discharge rate
 - Trickier charger design than NiCd. Shouldn't use trickle chgr.

- Lithium-Ion
 - LiCoO₂ aka "LCO"
 - LiNiMnCoO₂ aka "NMC"
 - LiFePO₄ aka "LFP"

Source: Battery University

Pocatello Amateur Radio Club

- LiCoO₂ aka "LCO"
 - Lithium Cobalt Oxide.. cobalt oxide is the "ion" part..
 - What is usually meant when we refer to "lithium" batteries
 - Nominal cell voltage of 3.6V (don't discharge below 2V)
 - Relatively low lifespan and limited load capacity (<C)

Pocatello Amateur Radio Club

- LiCoO₂ aka "LCO" (Cont'd)
 - Can explode! The industry prefers "rapid disassembly" ^(C)
 - Batteries often designed to limit charge/discharge current to C.
 - Shouldn't be charged below 32°

- LiNiMnCoO₂ aka "NMC"
 - Lithium Nickel Manganese Cobalt Oxide
 - Low internal resistance allows high charge/discharge current
 - Improved longevity
 - Used in Chevy Volt, Nissan Leaf, e-bikes, power tools, etc
 - Safer and cheaper than LCO

- LiFePO₄ aka "LFP"
 - Lithium Ferrophosphate
 - Higher self-discharge rate than other lithium-ion batteries
 - Supports high charge/discharge rates and has long life
 - Often used to replace lead acid starter batteries
 - Tolerant of abuse

- LiFePO₄ aka "LFP" (Cont'd)
 - Nominal cell voltage of 3.3V
 - Typically supports 2 to 4 times as many charge cycles as AGM
 - LFP batteries can be discharged 80% (compared to only 50% for AGM)

- LiFePO₄ aka "LFP" (Cont'd)
 - At high discharge rates, has significantly higher usable capacity than AGM with same Ah rating
 - BEWARE: Some LFP vendors cite a PbEq Ah or Lead acid equivalent Ah. Others use the term "Lithium Ah"... all to triple the true Ah rating in specs!

- LiFePO₄ aka "LFP" (Cont'd)
 - Safest current type of Lithium battery. It generates only 5.5% of the heat of LCO batteries and the thermal runaway temperature is a 270° (vs 130° C for LCO).
 - Typically half the weight of AGM

- LiFePO₄ aka "LFP" (Cont'd)
 - Shouldn't discharge a "12V" battery below 10V
 - Don't use a "battery minder" type of battery charger (one that tries to de-sulphate with periodic high current pulses).
 - Chargers not designed for LFP may overcharge a deeply discharged battery.
 Pocatello Amateur Radio Club

 "C" equals Ah capacity. For AGM batteries, typical recommended charge rate is 0.2C. For instance, a 10Ah battery should be charged at a 2Amp charge rate. For a Lithium battery, typical recommended charge rate is 0.5C, though it can tolerate 2.5C (with reduced cycle life).

Deep cycle batteries are rated in ampere-hours (Ah). Typically based upon max current draw for 20 hours to 10.5V (for 12V battery). Sometimes 6 and 100 hour rates are given for different applications. The faster a battery is discharged, the LOWER the Ah capacity.

- Unlike other battery types, lead acid battery state of charge can be determined fairly reliably off of the cell voltage (after resting for 3 hours). For a 12V battery:
 - 12.7V 100% charged
 - 12.4V 70% charged
 - 12.1V 50% charged
 - 11.9V 40% charged (minimum recommended)

Pocatello Amateur Radio Club

 If a battery is rated in CCA (cold cranking amps) or MCA (marine cranking amps), it may not be a deep cycle battery, regardless of that term being used by manufacturer.

- Avoid using a fast/rapid charger in low or high temperatures. Also avoid using with aged/low performing batteries
- Your chance of being struck by lighting in your life is 1 in 13,000.
 Lithium-ion battery failure rate is 1 in 1 million (1 in 10 million for quality batteries).

For More Info on Batteries

- <u>www.wikipedia.com</u>
- <u>www.batteryuniversity.com</u>

for quick research for more in depth information

